A washing machine heats 10kg of water in each wash cycle. How much energy is saved by washing at 30'c instead of 50'c if the starting temperature of the cold water is 16'c? The specific heat capacity of water is 4200 J/Kg'c

Respuesta :

Answer:

[tex]8.4 \times 10^{5}\; \rm J[/tex], assuming that there's no heat exchange between the washing machine and the environment.

Explanation:

Let [tex]m[/tex] denote the mass of water and [tex]c[/tex] the specific heat capacity of water. The energy required to raise the temperature of that much water by [tex]\Delta T[/tex] would be:

[tex]Q = c \cdot m \cdot \Delta T[/tex].

Washing at [tex]30\; \rm ^{\circ} C[/tex] would require a temperature change of [tex]\Delta T = 30\; \rm ^{\circ} C - 16\; ^{\circ} \rm C = 14\; \rm K[/tex].

Washing at [tex]50\; \rm ^{\circ} C[/tex] would require a temperature change of [tex]\Delta T = 50\; \rm ^{\circ} C - 16\; ^{\circ} \rm C = 34\; \rm K[/tex].

In both situations, [tex]c = 4.2 \times 10^{3}\; \rm J \cdot kg \cdot K^{-1}[/tex] while [tex]m = 10\; \rm kg[/tex].

Calculate the energy required in either situation:

Washing at [tex]30\; \rm ^{\circ} C[/tex]:

[tex]\begin{aligned}& Q({30\; ^{\circ} {\rm C}}) \\ &= c \cdot m \cdot \Delta T \\ &= 4.2 \times 10^{3}\; \rm J \cdot kg \cdot K^{-1} \times 10\; \rm kg \times 14\; \rm K \\ &= 588000 \times 10^{5}\; \rm J\end{aligned}[/tex].

Washing at [tex]50\; ^{\circ} {\rm C}[/tex]:

[tex]\begin{aligned}& Q({50\; ^{\circ} {\rm C}}) \\ &= c \cdot m \cdot \Delta T \\ &= 4.2 \times 10^{3}\; \rm J \cdot kg \cdot K^{-1} \times 10\; \rm kg \times 34\; \rm K \\ &= 1428000 \; \rm J\end{aligned}[/tex].

[tex]1428000\; \rm J - 588000\; \rm J = 8.4 \times 10^{5}\; \rm J[/tex].