Respuesta :
Answer:
The point estimate is 5,617.
The margin of error of a confidence interval for the difference between the two population means is 454.18386 .
The 98% confidence interval for the difference between the two population means is (5163, 6071).
Step-by-step explanation:
Before building the confidence interval, we need to understand the central limit theorem and subtraction of normal variables.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Subtraction between normal variables:
When two normal variables are subtracted, the mean is the difference of the means, while the standard deviation is the square root of the sum of the variances.
Compound 1:
127 brakes, average brake life of 42,814 miles, population standard deviation of 1819 miles. This means that:
[tex]\mu_1 = 42814[/tex]
[tex]s_1 = \frac{1819}{\sqrt{127}} = 161.41[/tex]
Compound 2:
163 brakes, average brake life of 37,197 miles, population standard deviation of 1401 miles. This means that:
[tex]\mu_2 = 37197[/tex]
[tex]s_2 = \frac{1401}{\sqrt{163}} = 109.73[/tex]
Distribution of the difference:
[tex]\mu = \mu_1 - \mu_2 = 42814 - 37197 = 5617[/tex]
The point estimate is 5,617.
[tex]s = \sqrt{s_1^2 + s_2^2} = \sqrt{161.41^2 + 109.73^2} = 195.18[/tex]
Confidence interval
The confidence interval is:
[tex]\mu \pm zs[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = zs[/tex]
98% confidence level
So [tex]\alpha = 0.02[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.02}{2} = 0.99[/tex], so [tex]Z = 2.327[/tex].
Margin of error:
[tex]M = zs = 195.18*2.327 = 454.18386 [/tex]
The margin of error of a confidence interval for the difference between the two population means is 454.18386 .
For the confidence interval, as we round to the nearest whole number, we round it 454. So
The lower bound of the interval is:
[tex]\mu - zs = \mu - M = 5617 - 454 = 5163[/tex]
The upper bound of the interval is:
[tex]\mu + zs = \mu + M = 5617 + 454 = 6071[/tex]
The 98% confidence interval for the difference between the two population means is (5163, 6071).