If (3x2 + 22x + 7) ÷(x + 7) = 3x + 1, then (x + 7)( ) = . The check of the polynomial division problem shows that the product of two polynomials is a polynomial. This supports the fact that the property is satisfied for polynomial multiplication.

Respuesta :

Answer:

[tex](x + 7) * (3x + 1) = (3x^2 + 22x + 7)[/tex]

Step-by-step explanation:

Given

[tex](3x^2 + 22x + 7) \div (x + 7) = 3x + 1[/tex]

[tex](x + 7) * (\ ) = [\ ][/tex]

Required

Complete the blanks

We have:

[tex](3x^2 + 22x + 7) \div (x + 7) = 3x + 1[/tex]

Rewrite as:

[tex]\frac{(3x^2 + 22x + 7) }{ (x + 7)} = 3x + 1[/tex]

Cross multiply

[tex](x + 7) * (3x + 1) = (3x^2 + 22x + 7)[/tex]

Answer:

Answer B, C, C