) The velocity function is v(t)=−t2+3t−2v(t)=−t2+3t−2 for a particle moving along a line. Find the displacement (net distance covered) of the particle during the time interval [−2,5][−2,5].

Respuesta :

Answer:

89.87m/s

Explanation:

Given the velocity function

v(t)=−t²+3t−2

In order to get the displacement function, we will integrate the velocity function as shown:

[tex]\int\limits^5_{-2} {v(t)} \, dt \\d(t)= \int\limits^5_{-2}{(-t^2+3t+2)} \, dt \\\\d(t)=[\frac{-t^3}{3}+\frac{3t^2}{2}+2t ]^5_{-2}\\[/tex]

at t = 5

[tex]d(5)=[\frac{-5^3}{3}+\frac{3(5)^2}{2}+2(5) ]\\d(5)=[\frac{-125}{3}+\frac{75}{2}+10 ]\\d(5)=-41.7+37.5+10\\d(5)=89.2m/s[/tex]

at t = -2

[tex]d(-2)=[\frac{-(-2)^3}{3}+\frac{3(-2)^2}{2}+2(-2) ]\\d(-2)=[\frac{-8}{3}+\frac{12}{2}+(-4) ]\\d(-2)=-2.67+6-4\\d(-2)=-0.67m/s[/tex]

Required displacement = d(5) - d(-2)

Required displacement = 89.2 - (-0.67)

Required displacement = 89.2 + 0.67

Required displacement = 89.87m/s