Answer:
89.87m/s
Explanation:
Given the velocity function
v(t)=−t²+3t−2
In order to get the displacement function, we will integrate the velocity function as shown:
[tex]\int\limits^5_{-2} {v(t)} \, dt \\d(t)= \int\limits^5_{-2}{(-t^2+3t+2)} \, dt \\\\d(t)=[\frac{-t^3}{3}+\frac{3t^2}{2}+2t ]^5_{-2}\\[/tex]
at t = 5
[tex]d(5)=[\frac{-5^3}{3}+\frac{3(5)^2}{2}+2(5) ]\\d(5)=[\frac{-125}{3}+\frac{75}{2}+10 ]\\d(5)=-41.7+37.5+10\\d(5)=89.2m/s[/tex]
at t = -2
[tex]d(-2)=[\frac{-(-2)^3}{3}+\frac{3(-2)^2}{2}+2(-2) ]\\d(-2)=[\frac{-8}{3}+\frac{12}{2}+(-4) ]\\d(-2)=-2.67+6-4\\d(-2)=-0.67m/s[/tex]
Required displacement = d(5) - d(-2)
Required displacement = 89.2 - (-0.67)
Required displacement = 89.2 + 0.67
Required displacement = 89.87m/s