Answer:
[tex]\frac{dv}{dt} =7239.168 cm/sec[/tex]
Step-by-step explanation:
From the question we are told that:
Rate [tex]\frac{dh}{dt}=1cm[/tex]
Height [tex]h=12cm[/tex]
Radius [tex]r=4h[/tex]
Generally the equation for Volume of Cone is mathematically given by
[tex]V=\frac{1}{3}\pi r^2h[/tex]
[tex]V=\frac{1}{3}\pi (4h)^2h[/tex]
Differentiating
[tex]\frac{dv}{dt} =\frac{16}{3}\pi3h^2\frac{dh}{dt}[/tex]
[tex]\frac{dv}{dt} =\frac{16}{3}*3.142*3*12^2*1[/tex]
[tex]\frac{dv}{dt} =7239.168 cm/sec[/tex]