Plz see attachment below

Answer:
Step-by-step explanation:
Table I
Given function is,
f(x) = [tex]b^x[/tex]
From the table attached,
For x = 0.827, value of function f(0.827) = 5,
f(0.827) = [tex]b^{0.827}[/tex]
Therefore, [tex]b^{0.827}=5[/tex]
[tex]\text{log}(b^{0.827})=\text{log}(5)[/tex]
0.827[log(b)] = log(5)
log(b) = 0.8452
b = [tex]10^{0.8452}[/tex]
b = 7
Therefore, function 'f' will be,
f(x) = [tex]7^x[/tex]
For f(x) = 9,
9 = [tex]7^x[/tex]
log(9) = log([tex]7^x[/tex])
log(9) = x[log(7)]
x = 1.129
Table II
Given function is g(x) = [tex]\text{log}_b(x)[/tex]
From the given table,
For x = 7, g(x) = 1
1 = [tex]\text{log}_b(7)[/tex]
[tex]b^1=7[/tex]
b = 7
Therefore, the function 'g' will be,
g(x) = [tex]\text{log}_7(x)[/tex]
For g(x) = 1.318
1.318 = [tex]\text{log}_7(x)[/tex]
[tex]x=7^{1.318}[/tex]
[tex]x=12.9968[/tex]
[tex]x=13.997[/tex]