Respuesta :

Answer:

Step-by-step explanation:

Table I

Given function is,

f(x) = [tex]b^x[/tex]

From the table attached,

For x = 0.827, value of function f(0.827) = 5,

f(0.827) = [tex]b^{0.827}[/tex]

Therefore, [tex]b^{0.827}=5[/tex]

[tex]\text{log}(b^{0.827})=\text{log}(5)[/tex]

0.827[log(b)] = log(5)

log(b) = 0.8452

b = [tex]10^{0.8452}[/tex]

b = 7

Therefore, function 'f' will be,

f(x) = [tex]7^x[/tex]

For f(x) = 9,

9 = [tex]7^x[/tex]

log(9) = log([tex]7^x[/tex])

log(9) = x[log(7)]

x = 1.129

Table II

Given function is g(x) = [tex]\text{log}_b(x)[/tex]

From the given table,

For x = 7, g(x) = 1

1 = [tex]\text{log}_b(7)[/tex]

[tex]b^1=7[/tex]

b = 7

Therefore, the function 'g' will be,

g(x) = [tex]\text{log}_7(x)[/tex]

For g(x) = 1.318

1.318 = [tex]\text{log}_7(x)[/tex]

[tex]x=7^{1.318}[/tex]

[tex]x=12.9968[/tex]

[tex]x=13.997[/tex]