Respuesta :
Solution :
Let the positive [tex]x-axis[/tex] is along the East and the positive [tex]y[/tex] direction is along the north.
Given :
Mass of the Tesla car, [tex]m_1[/tex] = [tex]750 \ kg[/tex]
Mass of the Ford car, [tex]m_2 = 1250 \ kg[/tex]
Now let the initial velocity of Tesla car in the south direction be = [tex]-v_1j[/tex]
The initial momentum of Tesla car, [tex]p_1 = -750 \ v_1[/tex]
Let the initial velocity of Ford car in the east direction be = [tex]v_2 \ i[/tex]
So the initial momentum of the Ford car is [tex]p_2=1250\ v_2 \ i[/tex]
Therefore, the initial velocity of both the cars is [tex]p_i = p_1+p_2[/tex]
[tex]=1250 \ v_2 \ i - 750\ v_1 \ j[/tex]
Now the final velocity of both the cars is [tex]v = 18 \ m/s[/tex]
So the vector form is :
[tex]v = 18\cos 32\ i-18 \sin 32 \ j[/tex]
[tex]= 15.26 \ i - 9.54 \ j[/tex]
Therefore the momentum after the accident is
[tex]p_f=(m_1+m_2) \times v[/tex]
[tex]=(750+1250) \times (15.26 \ i - 9.54 \ j)[/tex]
[tex]= 30520\ i -19080\ j[/tex]
According to the law of conservation of momentum, we know
[tex]p_i = p_f[/tex]
[tex]1250 \ v_2 \ i - 750\ v_1 \ j[/tex] [tex]= 30520\ i -19080\ j[/tex]
[tex]1250 \ v_2 = 30520[/tex]
[tex]v_2=24.4 \ m/s[/tex]
From, [tex]750\ v_1 = 19080[/tex]
We get, [tex]v_1=25.4 \ m/s[/tex]
Therefore the speed of Tesla car before collision = 25.4 m/s
The speed of ford car before collision = 24.4 m/s
