Respuesta :
The question is incomplete. The complete question is :
A spherical piece of candy is suspended in flowing water. The candy has a density of 1950 kg/m3 and has a 1.0 cm diameter. The water velocity is 1.0 m/s, the water density is assumed to be 1000.0 kg/m3, and the water viscosity is 1.0x10-3 kg/m/s. The diffusion coefficient of the candy solute in water is 2.0x10-9 m2/s, and the solubility of the candy solute in water is 2.0 kg/m3. Calculate the mass transfer coefficient (m/s) and the dissolution rate (kg/s).
Solution :
From flow over sphere, the mass transfer equation can be written as :
[tex]$Sh = 2 + 0.6 Re^{1/2} Sc^{1/3}$[/tex]
where, Sherood number, [tex]$Sh = \frac{K_L d}{D_{eff}}$[/tex]
Reynolds number, [tex]$Re=\frac{Vd\rho}{\mu}$[/tex]
Schmid number, [tex]$Sc= \frac{\mu}{\rho D_{eff}}$[/tex]
So,
[tex]$\frac{K_L d}{D_{eff}}=2+0.6 \left( \frac{V d \rho}{\mu} \right)^{1/2} \ \left( \frac{\mu}{\rho D_{eff}} \right)^{1/3}$[/tex]
Diameter, d = 1 cm = [tex]$1 \times 10^{-2}$[/tex] m
V = 1 m/s
[tex]$\rho = 1000 \ kg/m^3$[/tex]
[tex]$\mu = 10^{-3} \ kg/m/s$[/tex]
[tex]$D_{eff} = 2 \times 10^{-9} \ m^2/s$[/tex]
[tex]$\frac{K_L \times 10^{-2}}{2 \times 10^{-9}}=2+0.6 \left( \frac{1 \times 10^{-2} \times 10^3}{10^{-3}} \right)^{1/2} \ \left( \frac{10^{-3}}{10^3 \times 2 \times 10^{-9}} \right)^{1/3}$[/tex]
[tex]$K_L \times 5 \times 10^6=478.22$[/tex]
[tex]$K_L=9.5644 \times 10^{-5}$[/tex] m/s
So the mass transfer coefficient is 9.5644 [tex]$\times 10^{-5}$[/tex] m/s. It is given solubility,
[tex]$\Delta C = 2 \ kg/m^3$[/tex]
[tex]$N = Md^2 \times \Delta C \times K_L$[/tex]
[tex]$N= M \times (10^{-2})^2 \times 2 \times 9.5644 \times 10^{-5}$[/tex]
[tex]$N= 6 \times 10^{-8}$[/tex] kg/s (dissolution rate)