Respuesta :
Answer:
the distance from the cornea where a very distant object will be imaged is 23.35 mm
Explanation:
Given the data in the question;
For a spherical refracting surface;
[tex]n_i[/tex]/[tex]d_0[/tex] + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
where [tex]n_i[/tex] is the index of refraction of the light of ray in the incident medium
[tex]d_0[/tex] is the object distance
[tex]n_t[/tex] is the index of refraction of light ray in the refracted medium
[tex]d_i[/tex] is the image distance
R is the radius of curvature
Now, let [tex]d_0[/tex] = ∞, such that;
[tex]n_i[/tex]/∞ + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
0 + [tex]n_t[/tex]/[tex]d_i[/tex] = ( [tex]n_t[/tex] - [tex]n_i[/tex] )/R
we make [tex]d_i[/tex] subject of the formula
[tex]n_t[/tex]R = [tex]d_i[/tex]( [tex]n_t[/tex] - [tex]n_i[/tex] )
[tex]d_i[/tex] = ( [tex]n_t[/tex] × R ) / ( [tex]n_t[/tex] - [tex]n_i[/tex] )
given that; R = 6.50 mm, [tex]n_t[/tex] = 1.41, we know that [tex]n_i[/tex] = 1.00
so we substitute
[tex]d_i[/tex] = (1.41 × 6.50 mm ) / ( 1.41 - 1.00 )
[tex]d_i[/tex] = 9.165 / 0.41
[tex]d_i[/tex] = 23.35 mm
Therefore, the distance from the cornea where a very distant object will be imaged is 23.35 mm