Given the following constraints, find the maximum and minimum values for z. Constraints: 2x−y≤124x+2y≥0x+2y≤6 Optimization Equation: z=2x+5y

Respuesta :

Answer:

Minimum = 0

Maximum = 15

Step-by-step explanation:

Given

Optimization Equation: [tex]z = 2x + 5y[/tex]

Constraints:

[tex]2x- y \le 12[/tex]

[tex]4x + 2y \ge 0[/tex]

[tex]x + 2y \le 6[/tex]

[tex]x,y\ge 0[/tex]

Required

The maximum and the minimum values of z

To do this, we make use of graphical method.

Plot the constraints on a graph (see attachment)

Get the corner points from the points.

These are the points where [tex]x,y\ge 0[/tex]

So, we have:

[tex](x_1,y_1) = (0,0)[/tex]

[tex](x_2,y_2) = (0,3)[/tex]

[tex](x_3,y_3) = (6,0)[/tex]

Substitute these points in the optimization equation:

[tex](x_1,y_1) = (0,0)[/tex]

[tex]z = 2x + 5y[/tex]

[tex]z = 2 * 0 + 5 * 0 = 0[/tex]

[tex](x_2,y_2) = (0,3)[/tex]

[tex]z = 2 * 0 + 5 * 3 = 15[/tex]

[tex](x_3,y_3) = (6,0)[/tex]

[tex]z = 2 * 6 + 5 * 0 = 12[/tex]

So, the values are:

Minimum = 0

Maximum = 15

Ver imagen MrRoyal