Answer:
"[tex]0.6450 < p < 0.723[/tex]" is the right solution.
Step-by-step explanation:
Given:
n = 380
x = 260
Point estimate,
[tex]\hat p = \frac{x}{n}[/tex]
[tex]=\frac{260}{380}[/tex]
[tex]=0.6842[/tex]
Critical value,
[tex]Zc = 1.645[/tex]
Standard error will be:
[tex]S.E = \sqrt{\frac{0.6842(1-0.6842)}{380} }[/tex]
[tex]=0.0238[/tex]
Margin of error will be:
[tex]E = Zc\times S.E[/tex]
[tex]=1.645\times 0.0238[/tex]
[tex]=0.0392[/tex]
hence,
Confidence level will be:
= [tex]\hat p \pm E[/tex]
= [tex]0.6842 \pm 0.0392[/tex]
= [tex]0.6450 < p < 0.723[/tex]