Answer:
[tex]P_{95\%}=(0.333,0.527)[/tex]
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=100[/tex]
Selected sample [tex]x=43[/tex]
Confidence Interval [tex]CI=95\%[/tex]
Significance Level [tex]\alpha=0.05[/tex]
Probability of picking nose is
[tex]P=\frac{x}{n}[/tex]
[tex]P=\frac{43}{100}[/tex]
[tex]P=0.43[/tex]
Generally the equation for standard error is mathematically given by
[tex]S.E=\sqrt{p*(1-p)}{n}[/tex]
[tex]S.E=\sqrt{0.4*(1-0.57)}{100}[/tex]
[tex]S.E=0.0495[/tex]
Therefore
The proportions 95\% interval is
[tex]P_{95\%}=[P-1.96x SE(P),P+1.96*SE(P)][/tex]
[tex]P_{95\%}=(0.43-1.96*0.0495,0.43+1.96*0.045)[/tex]
[tex]P_{95\%}=(0.333,0.527)[/tex]