Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line.
y2 = 2x, x = 2y;
about the y-axis
b) Sketch the region
c) Sketch the solid, and a typical disk or washer.

Respuesta :

Answer:

V = 34,13*π   cubic units

Step-by-step explanation: See Annex

We find the common points of the two curves, solving the system of equations:

y²  = 2*x                           x = 2*y  ⇒  y = x/2

(x/2)² = 2*x

x²/4 = 2*x

x  =  2*4         x  = 8      and   y = 8/2       y = 4

Then point  P ( 8 ;  4 )

The other point Q is  Q ( 0; 0)

From these  two points, we get the integration limits for dy ( 0 , 4 )are the integration limits.

Now with the help of geogebra we have: In the annex segment ABCD is dy then

V = π *∫₀⁴ (R² - r² ) *dy   =  π *∫₀⁴ (2*y)² - (y²/2)² dy =  π * ∫₀⁴ [(4y²) - y⁴/4 ] dy

V = π * [(4/3)y³ - (1/20)y⁵] |₀⁴

V =  π * [ (4/3)*4³ - 0 - 1/20)*1024 + 0 )

V = π * [256/3  - 51,20]

V = 34,13*π   cubic units

Ver imagen jtellezd