Let P(1,2,1), Q(1,0,-1), R(2,2,0) be the vertices of a parallelogram with adjacent sides PQ and PR. Find the other vertex S.

Respuesta :

Given:

The vertices of a parallelogram are P(1,2,1), Q(1,0,-1), R(2,2,0).

PQ and PR are the adjacent sides of the parallelogram.

To find:

The coordinates of vertex S.

Solution:

We know that, the diagonals of a parallelogram bisect each other.

Let the coordinates of the vertex S are (a,b,c).

In the given parallelogram PS and QR are the diagonals. It means their midpoints are same.

[tex]\left(\dfrac{1+a}{2},\dfrac{2+b}{2},\dfrac{1+c}{2}\right)=\left(\dfrac{1+2}{2},\dfrac{0+2}{2},\dfrac{-1+0}{2}\right)[/tex]

[tex]\left(\dfrac{1+a}{2},\dfrac{2+b}{2},\dfrac{1+c}{2}\right)=\left(\dfrac{3}{2},\dfrac{2}{2},\dfrac{-1}{2}\right)[/tex]

On comparing both sides, we get

[tex]\dfrac{1+a}{2}=\dfrac{3}{2}[/tex]

[tex]1+a=3[/tex]

[tex]a=3-1[/tex]

[tex]a=2[/tex]

Similarly,

[tex]\dfrac{2+b}{2}=\dfrac{2}{2}[/tex]

[tex]2+b=2[/tex]

[tex]b=2-2[/tex]

[tex]b=0[/tex]

And,

[tex]\dfrac{1+c}{2}=\dfrac{-1}{2}[/tex]

[tex]1+c=-1[/tex]

[tex]c=-1-1[/tex]

[tex]c=-2[/tex]

Therefore, the coordinates of vertex S are (2,0,-2).