Respuesta :
Answer:
11.1g
Explanation:
since the equation is already balanced just drop down the elements you will work with and use the mole to mole ratios
Cacl2 : 2Kcl
1 : 2
since potassium chloride has alot of information find it's moles
number of moles=mass/molecular mass
=10g/74.5
=0.13g/mol
now use the mole to mole ratios to find the number of moles of calcium chloride
1 : 2
x:0.13
2x/2=0.13/2
x=0.067g/mol of cacl2
then you can calculate the mass of calcium chloride
m=n×mm
=0.067×111
=7.4g
I hope this helps
The mass of calcium chloride, CaCl₂ needed to produce 10 g of potassium chloride, KCl is 7.45 g
We'll begin by calculating the mass of CaCl₂ that reacted and the mass of KCl produced from the balanced equation.
CaCl₂ + K₂CO₃ —> 2KCl + CaCO₃
Molar mass of CaCl₂ = 40 + (35.5 × 2) = 111 g/mol
Mass of CaCl₂ = 1 × 111 = 111 g
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Mass of KCl from the balanced equation = 2 × 74.5 = 149 g
From the balanced equation above,
149 g of KCl were produced by 111 g of CaCl₂.
Finally, we shall determine the mass of CaCl₂ needed to produce 10 g of KCl. This can be obtained as follow:
From the balanced equation above,
149 g of KCl were produced by 111 g of CaCl₂.
Therefore,
10 g of KCl will be produce by = (10 × 111) / 149 = 7.45 g of CaCl₂.
Thus, 7.45 g of CaCl₂ were obtained from the reaction.
Learn more about stoichiometry: https://brainly.com/question/15858344