Respuesta :

Answer:

x [tex]\geq[/tex] 4

Step-by-step explanation:

-4(8-3x)[tex]\geq[/tex]6x-8 multiply inside the parenthesis with -4

12x - 32 [tex]\geq[/tex] 6x - 8 export like terms to the same side of the inequality

12x - 6x [tex]\geq[/tex] 32 - 8

6x [tex]\geq[/tex] 24 divide both sides by 6

x [tex]\geq[/tex] 4

Given :

What is the solution to -4(8 - 3x) ≥ 6x - 8 ?

Solution :

Assume this ≥ sign as = sign

  • - 4(8 - 3x) ≥ 6x - 8

By simplifying the left hand side we get

  • - 32 + 12x ≥ 6x - 8

Transposing them to the other side

  • 12x - 6x ≥ 32 - 8

  • 6x ≥ 24

  • x ≥ 24/6

  • x ≥ 4

Hence, the correct answer is the third option i.e. x ≥ 4