PLEASE HELP
A cone's circular base has a diameter of 8 feet. The volume of the cone is 279 cubic feet. What is the approximate height of the cone?
16.65 feet
.46 feet
1.85 feet
4.16 feet

Respuesta :

Given :

A cone's circular base has a diameter of 8 feet. The volume of the cone is 279 cubic feet. What is the approximate height of the cone?

Solution :

Given Data :

Diameter = 8 ft

Volume of Cone = 279 ft³

Formula for Cone

[tex] \: \: \: \: \: \: \: \: \: \: \: \ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \star \: \: \green{\underline{ \green{ \overline{ \blue{\boxed{ \frak{ \pink{Volume \: of \:Cone = πr² \frac{h}{3} }}}}}}}}[/tex]

____________________________________

As we know radius is diameter/2

Radius = 8/2 = 4 ft

Now, putting the values in the formula we get

[tex] \mapsto \frak{Volume = \frac{22}{7} \times {4}^{2} \times \frac{h}{3} }[/tex]

[tex]\mapsto \frak{Volume = \frac{22}{7} \times 16 \times \frac{h}{3} }[/tex]

[tex] \mapsto \frak{Volume = \frac{352}{21} h }[/tex]

Now, putting the value of volume which is 279 ft we get

[tex] \mapsto \frak{279 = \frac{352}{21}h }[/tex]

[tex] \mapsto \frak{h = 279 \times \frac{21}{352} }[/tex]

[tex]\mapsto \frak{h = 16.64 \: ft }[/tex]

After approximating we will get the value as 16.65 ft

Hence, the correct answer is the first option i.e 16.65 ft