Respuesta :

Answer:

[tex]\tan(x+y) = 3.73[/tex]

Explanation:

The missing part of the question are:

[tex]\sin(x) = \frac{1}{2}[/tex]

[tex]\cos(y) = \frac{\sqrt 2}{2}[/tex]

Required

[tex]\tan(x + y)[/tex]

First, we calculate [tex]\sin(y)[/tex] and [tex]\cos(x)[/tex]

We have:

[tex]\sin^2(x) + \cos^2(x) = 1[/tex]

So:

[tex](1/2)^2 + \cos^2(x) = 1[/tex]

Collect like terms

[tex]\cos^2(x) = 1 - (1/2)^2[/tex]

[tex]\cos^2(x) = 1 - \frac{1}{4}[/tex]

Take LCM

[tex]\cos^2(x) = \frac{4-1}{4}[/tex]

[tex]\cos^2(x) = \frac{3}{4}[/tex]

Square roots of both sides

[tex]\cos(x) = \frac{\sqrt 3}{2}[/tex]

Similarly,

[tex]\sin^2(y) + \cos^2(y) = 1[/tex]

So:

[tex]\sin^2(y)+(\sqrt 2/2)^2 = 1[/tex]

[tex]\sin^2(y)+ (2/4) = 1[/tex]

[tex]\sin^2(y)+1/2 = 1[/tex]

Collect like terms

[tex]\sin^2(y) = 1 - 1/2[/tex]

Take LCM

[tex]\sin^2(y) = \frac{2 -1}{2}[/tex]

[tex]\sin^2(y) = \frac{1}{2}[/tex]

Square roots of both sides

[tex]\sin(y) = \frac{1}{\sqrt2}[/tex]

Rationalize

[tex]\sin(y) = \frac{\sqrt2}{2}[/tex]

So, we have:

[tex]\sin(x) = \frac{1}{2}[/tex]           [tex]\cos(x) = \frac{\sqrt 3}{2}[/tex]

[tex]\cos(y) = \frac{\sqrt 2}{2}[/tex]        [tex]\sin(y) = \frac{\sqrt2}{2}[/tex]

[tex]\tan(x) = \sin(x) \div \cos(x)[/tex]

[tex]\tan(x) = \frac{1}{2} \div \frac{\sqrt 3}{2}[/tex]

Rewrite as:

[tex]\tan(x) = \frac{1}{2} * \frac{2}{\sqrt 3}[/tex]

[tex]\tan(x) = \frac{1}{\sqrt 3}[/tex]

Rationalize

[tex]\tan(x) = \frac{\sqrt 3}{3}[/tex]

Similarly

[tex]\tan(y) = \sin(y) \div \cos(y)[/tex]

[tex]\tan(y) = \frac{\sqrt 2}{2} \div \frac{\sqrt 2}{2}[/tex]

[tex]\tan(y) = 1[/tex]

Lastly,

[tex]\tan(x + y)= \frac{\tan(x) + \tan(y)}{1 - \tan(x) \cdot \tan(y)}[/tex]

[tex]\tan(x + y)= \frac{\frac{\sqrt3}{3} + 1}{1 - \frac{\sqrt3}{3} \cdot 1}[/tex]

[tex]\tan(x + y)= \frac{\frac{\sqrt3}{3} + 1}{1 - \frac{\sqrt3}{3}}[/tex]

Combine fractions

[tex]\tan(x + y)= \frac{\frac{\sqrt3+3}{3}}{\frac{3 - \sqrt3}{3}}[/tex]

Cancel out 3

[tex]\tan(x + y)= \frac{\sqrt3+3}{3 - \sqrt3}[/tex]

Using a calculator

[tex]\tan(x+y) = 3.73[/tex]