Respuesta :

msm555

Sin[tex]\theta_{1}=\frac{3\sqrt{21}}{17}[/tex]

Solution given:

Cos[tex]\theta_{1}=\frac{10}{17}[/tex]

[tex]\frac{adjacent}{hypotenuse}=\frac{10}{17}[/tex]

equating corresponding value

we get

adjacent=10

hypotenuse=17

perpendicular=x

now

by using Pythagoras law

Hypotenuse ²=perpendicular²+adjacent ²

substituting value

17²=x²+10²

17²-10²=x²

x²=17²-10²

x²=189

doing square root

[tex]\sqrt{x²}=\sqrt{189}[/tex]

x=[tex]3\sqrt{21}[/tex]

now

In I Quadrant sin angle is positive

Sin[tex]\theta_{1}=\frac{perpendicular}{hypotenuse}[/tex]

Sin[tex]\theta_{1}=\frac{3\sqrt{21}}{17}[/tex]

Answer:

sin theta = 3 sqrt(21)/17

Step-by-step explanation:

cos theta = adj / hyp

We can find the opp by using the Pythagorean theorem

adj^2 + opp ^2 = hyp^2

10^2 +opp^2 = 17^2

100 + opp^2 = 289

opp^2 = 289-100

opp^2 = 189

Taking the square root

opp = sqrt(189)

opp = 3 sqrt(21)

Since we are in the first quad, opp is positive

sin theta = opp /hyp

sin theta = 3 sqrt(21)/17

Ver imagen wegnerkolmp2741o