Answer:
[tex]x * (x - 2) = 143[/tex]
Where [tex]x = 13[/tex]
Step-by-step explanation:
Given
[tex]x (x - \_) = 143[/tex]
Required
Complete the blank
The complete question implies that the product include 2 consecutive odd numbers.
Two numbers whose products equal 143 are: 11 and 13
i.e. [tex]11 * 13 = 143[/tex]
So, we have:
[tex]x * (x - \_) = 13 * 11[/tex]
By comparison, we have:
[tex]x = 13[/tex]
[tex]x - \_ = 11[/tex]
Collect like terms
[tex]\_ = x - 11[/tex]
Substitute 13 for x
[tex]\_ = 13 - 11[/tex]
[tex]\_ = 2[/tex]
So, the complete equation is:
[tex]x * (x - 2) = 143[/tex]
Where [tex]x = 13[/tex]