Respuesta :

Explanation:

Let [tex]\textbf{A} = 6\hat{\textbf{i}} + 4\hat{\textbf{j}} - 2\hat{\textbf{k}}[/tex] and [tex]\textbf{B} = 2\hat{\textbf{i}} - 2\hat{\textbf{j}} + 3\hat{\textbf{k}}[/tex]

The sum of the two vectors is

[tex]\textbf{A + B} = (6 + 2)\hat{\textbf{i}} + (4 - 2)\hat{\textbf{j}} + (-2 + 3)\hat{\textbf{k}}[/tex]

[tex] = 8\hat{\textbf{i}} + 2\hat{\textbf{j}} + \hat{\textbf{k}}[/tex]

The difference between the two vectors can be written as

[tex]\textbf{A - B} = (6 - 2)\hat{\textbf{i}} + (4 - (-2))\hat{\textbf{j}} + (-2 - 3)\hat{\textbf{k}}[/tex]

[tex]= 4\hat{\textbf{i}} + 6\hat{\textbf{j}} - 5\hat{\textbf{k}}[/tex]