Respuesta :

Answer:

[tex]Max\ z = 1[/tex]

[tex]Min\ z = -9[/tex]

Step-by-step explanation:

Given

[tex]z = 4x + 5y[/tex]

[tex]x \ge -1[/tex]

[tex]y \le 2x +3[/tex]

[tex]y \le -1[/tex]

Required

The maximum and minimum of z

To do this, we make use of the graphical method

See attachment for graphs of

[tex]x \ge -1[/tex]

[tex]y \le 2x +3[/tex]

[tex]y \le -1[/tex]

The corner points of the function are:

[tex](x,y) = (-1,1)[/tex]

[tex](x,y) = (-1,0)[/tex]

[tex](x,y) = (-1,-1)[/tex]

We have:

[tex]z = 4x + 5y[/tex]

Calculate z with  the above values

[tex]z = 4(-1) + 5(1) = 1[/tex]

[tex]z = 4(-1) + 5(0) = -4[/tex]

[tex]z = 4(-1) + 5(-1) = -9[/tex]

So, we have:

[tex]Max\ z = 1[/tex]

[tex]Min\ z = -9[/tex]

Ver imagen MrRoyal