Respuesta :

Answer:

u is 172 and v is 17

Step-by-step explanation:

To find u:

[tex]{ \bf{ \sin( \theta) = \frac{opposite}{hypotenuse} }}[/tex]

feed in the terms:

[tex] \sin(45 \degree) = \frac{17}{u} \\ \\ u = \frac{17}{ \sin(45 \degree) } \\ \\ u = 17 \sqrt{2} [/tex]

To find v:

[tex] \cos( \theta) = \frac{adjacent}{hypotenuse} [/tex]

feed in the terms:

[tex] \cos(45) = \frac{v}{u} \\ \\ v = u. \cos(45) \\ v = (17 \sqrt{2} )÷( \sqrt{2} ) \\ v = 17[/tex]