Answer:
The correct solution is:
(a) 1.66
(b) 1.05
Explanation:
Given:
Bending stress,
[tex]\sigma_b = 25 \ kpsi[/tex]
Torsional stress,
[tex]\tau= 15 \ kpsi[/tex]
Yield stress of steel bar,
[tex]\delta_y = 60 \ kpsi[/tex]
As we know,
⇒ [tex]\sigma_{max}^' \ = \sqrt{\sigma_b^2 + 3 \gamma^2}[/tex]
[tex]= \sqrt{(25)^2+3(15)^2}[/tex]
[tex]=36.055 \ kpsi[/tex]
(a)
The factor of safety against static failure will be:
⇒ [tex]\eta_y = \frac{\delta_y}{\sigma_{max}^'}[/tex]
By putting the values, we get
[tex]=\frac{60}{36.055}[/tex]
[tex]=1.66[/tex]
(b)
According to the Goodman line failure,
[tex]\sigma_a = \sigma_b = 25 \ kpsi[/tex]
[tex]S_e = 40 \ kpsi[/tex]
[tex]\sigma_m = \sqrt{3} \tau[/tex]
[tex]=\sqrt{3}\times 15[/tex]
[tex]=26 \ kpsi[/tex]
[tex]Sut = 80 \ kpsi[/tex]
⇒ [tex]\frac{\sigma_a}{S_e} +\frac{\sigma_m}{Sut} =\frac{1}{\eta_y}[/tex]
[tex]\frac{25}{40}+\frac{26}{80}=\frac{1}{\eta_y}[/tex]
[tex]\eta_y = 1.05[/tex]