The domain of a set is the possible input values the set can take.
It is true that the domain of ∀x ∃y(x+y≥0) is the set of real numbers
Given that: ∀x ∃y(x+y≥0)
Considering x+y ≥ 0, it means that the values of x + y are at least 0.
Make y the subject in x+y ≥ 0
So, we have:
[tex]\mathbf{y \le -x}[/tex]
There is no restriction as to the possible values of x.
This means that x can take any real number.
Hence, it is true that the domain of ∀x ∃y(x+y≥0) is the set of real numbers.
Read more about domain at:
https://brainly.com/question/15110684