Answer:
y is 5.
Step-by-step explanation:
[tex]{ \sf{{2}^{y - 3} \times {3}^{2y - 8 } = 36}} \\ \frac{ {2}^{y} }{ {2}^{3}} \times \frac{ {3}^{2y} }{ {3}^{8} } = 36 \\ \\ {2}^{y} . {3}^{2y} = 36 \times {2}^{3} \times {3}^{8} [/tex]
Introduce log base 10:
[tex] log_{10}( {2}^{y} \times {3}^{2y} ) = log_{10}(36 \times {2}^{3} \times {3}^{8} ) \\ log_{10}( {2}^{y} ) + log_{10}( {3}^{2y} ) = 6.28 \\ y log_{10}(2) + 2y log_{10}(3) = 6.28 \\ 0.3y + 0.95y = 6.28 \\ 1.25y = 6.28 \\ y = 5[/tex]