Respuesta :

Answer:

Average rate of change is - 1/6 or -0.166

Step-by-step explanation:

[tex]{ \tt{f(x) = \frac{1}{x - 5} }}[/tex]

f(-1):

[tex]{ \tt{f( - 1) = \frac{1}{( - 1 - 5)} }} \\ = { \tt{ - \frac{1}{6} }}[/tex]

f(3):

[tex]{ \tt{f(3) = \frac{1}{3 - 5} }} \\ = { \tt{ - \frac{1}{2} }}[/tex]

Average rate of change:

[tex] = { \bf{ \frac{f(3) - f(-1)}{2} }}[/tex]

[tex]{ \tt{ = \frac{ - \frac{1}{2} - ( - \frac{1}{6} ) }{ 2 } }} \\ \\ = { \tt{ - \frac{1}{6} }}[/tex]

Answer:

- [tex]\frac{1}{12}[/tex]

Step-by-step explanation:

The average rate of change of f(x) in the closed interval [ a, b ] is

[tex]\frac{f(b)-f(a)}{b-a}[/tex]

Here [ a, b ] = [ - 1, 3 ] , then

f(3) = [tex]\frac{1}{3-5}[/tex] = - [tex]\frac{1}{2}[/tex]

f(- 1) = [tex]\frac{1}{-1-5}[/tex] = - [tex]\frac{1}{6}[/tex]

average rate of change

= [tex]\frac{-\frac{1}{2}-(-\frac{1}{6}) }{3-(-1)}[/tex]

= [tex]\frac{-\frac{1}{2}+\frac{1}{6} }{3+1}[/tex]

= [tex]\frac{-\frac{1}{3} }{4}[/tex]

= - [tex]\frac{1}{12}[/tex]