In circle O, the length of radius OL is 6 cm and the length of arc LM is 6.3 cm. The measure of angle MON is 75°. Circle O is shown. Line segments L O , M O, and N O are radii. The length of L O is 6 centimeters. Angle M O N is 75 degrees. The measure of arc L M is 6.3 centimeters. Rounded to the nearest tenth of a centimeter, what is the length of arc LMN? 7.9 cm 10.2 cm 12.6 cm 14.2 cm

Respuesta :

Answer:

[tex]LMN = 14.2[/tex]cm

Step-by-step explanation:

Given

[tex]r = OL = NO = MO = LO =6cm[/tex] -- radius

[tex]LM = 6.3cm[/tex] -- arc

[tex]\angle MON = 75^o[/tex]

(see attachment)

Required

The length of arc LMN

First, we calculate the length of arc MN using:

[tex]MN = \frac{\alpha}{360} * 2\pi r[/tex] --- length of arc

In this case:

[tex]\alpha = \angle MON = 75^o[/tex]

So, we have:

[tex]MN = \frac{75}{360} * 2 * 3.14* 6[/tex]

[tex]MN = \frac{75* 2 * 3.14* 6}{360}[/tex]

[tex]MN = \frac{2826}{360}[/tex]

[tex]MN = 7.85[/tex]

So, the length of arc LMN is:

[tex]LMN = LM + MN[/tex]

[tex]LMN = 6.3 + 7.85[/tex]

[tex]LMN = 14.15[/tex]

Ver imagen MrRoyal

Answer:

D

Step-by-step explanation:

14.2