Respuesta :
Answer:
F = 118 N
Explanation:
Assume Ann and Bob lift at their respective ends of the table
Sum moments about Bob's position to zero.
Let F be Ann's upward force
F[2.25] - 18.5(9.80)[2.25 / 2] - 8.33(9.80)[0.750] = 0
F = 117.86133333...
The lift force exert by Bob will be "117.9 N".
Given:
- Mass of table, [tex]m_t = 18.5 \ kg[/tex]
- Mass of box, [tex]m_b = 8.33 \ kg[/tex]
- Length of table, [tex]2.25 \ m[/tex]
- Length of box, [tex]0.75 \ m[/tex]
The weight of table will be:
→ [tex]W_t = m_t g[/tex]
[tex]= 18.5\times 9.8[/tex]
[tex]= 181.3 \ N[/tex]
Now,
→ [tex]\sum M_A_{nn} = -81.634\times 0.750-181.3\times 1.125+R_{bob}\times 1.125[/tex]
or,
→ [tex]R_{bob} = \frac{61.2255+203.9625}{2.25}[/tex]
[tex]= \frac{265.188}{2.25}[/tex]
[tex]= 117.9 \ N[/tex]
Thus the above answer is right.
Learn more about force here:
https://brainly.com/question/19427453