Answer:
The solution is:
(1) 0.0104
(2) 0.0008
Step-by-step explanation:
Given:
Mean,
[tex]\mu = 43.7[/tex]
Standard deviation,
[tex]\sigma = 1.6[/tex]
(1)
⇒ [tex]P(X<40) = P(\frac{x-\mu}{\sigma}<\frac{40-43.7}{1.6} )[/tex]
[tex]=P(z< - 2.3125)[/tex]
[tex]=P(z<-2.31)[/tex]
[tex]=0.0104[/tex]
(2)
As we know,
n = 15
⇒ [tex]P(\bar X > 45)= P(\frac{\bar x - \mu}{\frac{\sigma}{\sqrt{n} } } >\frac{45-43.7}{\frac{1.6}{\sqrt{15} } } )[/tex]
[tex]=P(z> 3.15)[/tex]
[tex]=1-P(z<3.15)[/tex]
[tex]=1-0.9992[/tex]
[tex]=0.0008[/tex]