Respuesta :
Answer:
5 and 13
Step-by-step explanation:
To evaluate (w ○ u)(8) , evaluate u(8) then substitute the value obtained into w(x) , that is
u(8) = = 8 + 9 = 17 , then
w(17) = [tex]\sqrt{17+8}[/tex] = [tex]\sqrt{25}[/tex] = 5
---------------------------------------
To evaluate (u ○ w )(8) , evaluate w(8) then substitute the value obtained into u(x) , that is
w(8) = [tex]\sqrt{8+8}[/tex] = [tex]\sqrt{16}[/tex] = 4 , then
u(4) = 4 + 9 = 13
Answer:
Step-by-step explanation:
[tex]u(x)=x+9\\\\w(x)=\sqrt{x+8} \\\\(wou)(x)=u(w(x))=u(\sqrt{x+8} )=\sqrt{x+8}+9\\(wou)(8)= \sqrt{8+8}+9=4+9=13\\\\\\(uow)(x)=w(u(x))=w(x+9)=\sqrt{x+9+8}=\sqrt{x+17}\\(wou)(8)= \sqrt{8+17}=\sqrt{25}=5\\\\[/tex]