Answer:
[tex]x=14[/tex]
Step-by-step explanation:
If two values are inversely proportional, their product must be maintained. That way, if one value goes up, the other goes down by the same extent.
Therefore, if [tex](x-4)[/tex] and [tex](y+3)[/tex] vary inversely, their product will be the same for all values of [tex]x-4[/tex] and [tex]y+3[/tex].
Let [tex]x=8[/tex] and [tex]y=2[/tex] as given in the problem. Substitute values:
[tex](8-4)(2+3)=(4)(5)=20[/tex]
Hence, the maintained product is [tex]20[/tex].
Thus, we have the following equation:
[tex](x-4)(y+3)=20[/tex]
Substitute [tex]y=-1[/tex] to find the value of [tex]x[/tex] when [tex]y=-1[/tex]:
[tex](x-4)(-1+3)=20,\\(x-4)(2)=20,\\x-4=10,\\x=10+4=\boxed{14}[/tex]