Answer:
The equation is
[tex]{ \underline{ \sf{y = - 2 {e}^{ - 2x} + 7 }}}[/tex]
Step-by-step explanation:
[tex]{ \sf{ {e}^{2x} \frac{dy}{dx} = 1}} \\ \\ { \sf{dy = {e}^{ - 2x} dx}}[/tex]
integrate:
[tex]{ \sf{ \int dy = \int { - e}^{2x} dx}} \\ { \sf{y = - 2 {e}^{ - 2x} + c}}[/tex]
c is a constant.
when y is 5, x is 0:
[tex]{ \sf{y = { - 2e}^{ - 2x} + c}} \\ { \sf{5 = - 2 {e}^{( - 2 \times 0)} + c }} \\ { \sf{5 = - 2 {e}^{0} + c }} \\ { \sf{5 = ( - 2 \times 1) + c}} \\ { \sf{5 = - 2 + c}} \\ { \sf{c = 7}}[/tex]
therefore, equation:
[tex]y = - 2 {e}^{ - 2x} + 7[/tex]