Respuesta :

The required probabilities are [tex]P(\text{pennies})=\dfrac{13}{28},P(\text{nickels})=\dfrac{27}{140},P(\text{dimes})=\dfrac{3}{14},P(\text{quarters})=\dfrac{9}{70}[/tex].

Given:

Pennies = 65

Nickels = 27

Dimes = 30

Quarters = 18

To find:

The probability of each.

Solution:

The probability formula:

[tex]\text{Probability}=\dfrac{\text{Favorable outcome}}{\text{Total outcomes}}[/tex]

Total number of coins:

[tex]65+27+30+18=140[/tex]

The probability of selecting Pennies is:

[tex]P(\text{pennies})=\dfrac{65}{140}[/tex]

[tex]P(\text{pennies})=\dfrac{13}{28}[/tex]

The probability of selecting nickels is:

[tex]P(\text{nickels})=\dfrac{27}{140}[/tex]

The probability of selecting dimes is:

[tex]P(\text{dimes})=\dfrac{30}{140}[/tex]

[tex]P(\text{dimes})=\dfrac{3}{14}[/tex]

The probability of selecting quarters is:

[tex]P(\text{quarters})=\dfrac{18}{140}[/tex]

[tex]P(\text{quarters})=\dfrac{9}{70}[/tex]

Therefore, the required probabilities are [tex]P(\text{pennies})=\dfrac{13}{28},P(\text{nickels})=\dfrac{27}{140},P(\text{dimes})=\dfrac{3}{14},P(\text{quarters})=\dfrac{9}{70}[/tex].

Learn more:

https://brainly.com/question/9721191