The required probabilities are [tex]P(\text{pennies})=\dfrac{13}{28},P(\text{nickels})=\dfrac{27}{140},P(\text{dimes})=\dfrac{3}{14},P(\text{quarters})=\dfrac{9}{70}[/tex].
Given:
Pennies = 65
Nickels = 27
Dimes = 30
Quarters = 18
To find:
The probability of each.
Solution:
The probability formula:
[tex]\text{Probability}=\dfrac{\text{Favorable outcome}}{\text{Total outcomes}}[/tex]
Total number of coins:
[tex]65+27+30+18=140[/tex]
The probability of selecting Pennies is:
[tex]P(\text{pennies})=\dfrac{65}{140}[/tex]
[tex]P(\text{pennies})=\dfrac{13}{28}[/tex]
The probability of selecting nickels is:
[tex]P(\text{nickels})=\dfrac{27}{140}[/tex]
The probability of selecting dimes is:
[tex]P(\text{dimes})=\dfrac{30}{140}[/tex]
[tex]P(\text{dimes})=\dfrac{3}{14}[/tex]
The probability of selecting quarters is:
[tex]P(\text{quarters})=\dfrac{18}{140}[/tex]
[tex]P(\text{quarters})=\dfrac{9}{70}[/tex]
Therefore, the required probabilities are [tex]P(\text{pennies})=\dfrac{13}{28},P(\text{nickels})=\dfrac{27}{140},P(\text{dimes})=\dfrac{3}{14},P(\text{quarters})=\dfrac{9}{70}[/tex].
Learn more:
https://brainly.com/question/9721191