Mathematicians please help me solve this question. Am marking the brainliest.

Step-by-step explanation:
Let [tex]x = r\cos{\theta}[/tex] and [tex]y = r\sin{\theta}[/tex]. Substituting these into our equation, it becomes
[tex]\dfrac{r^2\cos^2{\theta}}{25} + \dfrac{r^2\sin^2{\theta}}{9} = 1[/tex]
or
[tex]9r^2\cos^2{\theta} + 25r^2\sin^2{\theta} = 225[/tex]
Let use the identity [tex]\cos^2{\theta} = 1 - \sin^2{\theta}[/tex] to express the equation in terms of sine only:
[tex]9r^2 - 9r^2\sin^2{\theta} + 25\sin^2{\theta} = 225[/tex]
which simplifies to
[tex]r^2(9 + 16\sin^2{\theta}) = 225[/tex]
Taking the square root and solving for r , we get the polar form of the equation as
[tex]r = \dfrac{15}{\sqrt{9 + 16\sin^2{\theta}}}[/tex]
Answer:
x = r\cos{\theta}x=rcosθ and y = r\sin{\theta}y=rsinθ
\dfrac{r^2\cos^2{\theta}}{25} + \dfrac{r^2\sin^2{\theta}}{9} = 1
25
r
2
cos
2
θ
+
9
r
2
sin
2
θ
=1
or
9r^2\cos^2{\theta} + 25r^2\sin^2{\theta} = 2259r
2
cos
2
θ+25r
2
sin
2
θ=225
Let use the identity \cos^2{\theta} = 1 - \sin^2{\theta}cos
2
θ=1−sin
2
θ
9r^2 - 9r^2\sin^2{\theta} + 25\sin^2{\theta} = 2259r
2
−9r
2
sin
2
θ+25sin
2
θ=225
which simplifies to
r^2(9 + 16\sin^2{\theta}) = 225r
2
(9+16sin
2
θ)=225
Taking the square root and solving for r ,
r = \dfrac{15}{\sqrt{9 + 16\sin^2{\theta}}}r=
9+16sin
2
θ
15