Respuesta :

Step-by-step explanation:

The angle between vectors is given by

[tex]\cos{\theta} = \dfrac{\vec{\textbf{a}}\cdot \vec{\textbf{b}}}{|\vec{\textbf{a}}||\vec{\textbf{b}}|}[/tex]

The magnitudes for the vectors are as follows:

[tex]|\vec{\textbf{a}}| = \sqrt{a_x^2 + a_y^2 + a_z^2}[/tex]

[tex]\:\:\:\:\:\:\:=\sqrt{(2)^2 +(-5)^2 + (3)^2} = 6.16[/tex]

[tex]|\vec{\textbf{b}}| = \sqrt{b_x^2 + b_y^2 + b_z^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{(3)^2 + (1)^2 + (4)^2} = 5.10[/tex]

The dot product between the vectors is

[tex]\vec{\textbf{a}}\cdot \vec{\textbf{b}} = (2)(3) + (-5)(1) + (3)(4) = 13[/tex]

Therefore, the angle between the two vectors is

[tex]\cos{\theta} = \dfrac{\vec{\textbf{a}}\cdot \vec{\textbf{b}}}{|\vec{\textbf{a}}||\vec{\textbf{b}}|} = \dfrac{13}{(6.16)(5.10)}[/tex]

or

[tex]\theta = 65.56°[/tex]