Respuesta :

Answer:

I)

[tex]2a + 2b = -10\text{ or } 2a + 2b = 10[/tex]

II)

[tex]2a - 2b = -2 \text{ or } 2a-2b= 2[/tex]

Step-by-step explanation:

We are given that:

[tex]\displaytstyle a^2 + b^2 = 13 \text{ and } ab= 6[/tex]

I)

Recall the perfect square trinomial pattern:

[tex]\displaystyle (a+b)^2 = a^2 + 2ab + b^2[/tex]

Rewrite:

[tex]\displaystyle (a+b)^2 = (a^2 + b^2) + (2ab)[/tex]

Substitute:

[tex]\displaystyle (a+b)^2 = (13) + (12)[/tex]

Evaluate:

[tex]\displaystyle (a + b)^2 = 25[/tex]

Take the square root of both sides:

[tex]\displaystyle a + b = \pm\sqrt{25} = \pm5[/tex]

Hence:

[tex]\displaystyle 2a + 2b = \pm 10[/tex]

Therefore:

[tex]\displaystyle 2a + 2b = -10 \text{ or } 2a + 2b = 10[/tex]

II)

Likewise:

[tex]\displaystyle (a-b)^2 = a^2 - 2ab + b^2[/tex]

Substitute:

[tex]\displaystyle (a-b)^2 = (13) -(12)[/tex]

Solve:

[tex]\displaystyle \begin{aligned} (a-b)^2 &= 1 \\ a-b &= \pm \sqrt{1} \\ a-b &= \pm 1\\ 2a - 2b &= \pm 2\end{aligned}[/tex]

In conclusion:

[tex]2a - 2b = -2 \text{ or } 2a-2b= 2[/tex]