Respuesta :

Answer:

[tex]\displaystyle f(x) = -\frac{11}{4}(x + 1) + 2[/tex]

Step-by-step explanation:

We want to find the linear function given that:

[tex]f^{-1}(2) = -1\text{ and } f^{-1} (-9) = 3[/tex]

Recall that by the definition of inverse functions:

[tex]\displaystyle \text{If } f(a) = b\text{ then } f^{-1}(b) = a[/tex]

In other words, f(-1) = 2 and f(3) = -9.

This yields two points: (-1, 2) and (3, -9).

Find the slope of the linear function:

[tex]\displaystyle m = \frac{\Delta y}{\Delta x} = \frac{(-9) - (2)}{(3) -(-1)} = -\frac{11}{4}[/tex]

From point-slope form:

[tex]\displaystyle y - (2) = -\frac{11}{4}( x- (-1))[/tex]

Hence:

[tex]\displaystyle f(x) = -\frac{11}{4}(x + 1) + 2[/tex]

We can simplify if desired:

[tex]\displaystyle f(x) = -\frac{11}{4}x -\frac{3}{4}[/tex]