Respuesta :

4,3,2,1,0,-1, -2, -3, -4,

Equation of a line can be given by :

y = mx + b

Let's find the slope of the line (m) :

[tex] \mathcal{ \hookrightarrow \: \dfrac{y_2 - y_1}{x_2 - x_1} }[/tex]

[tex] \mathcal{ \hookrightarrow \: \dfrac{ - 1 - ( - 7)}{0 - 5} }[/tex]

[tex] \hookrightarrow \: \dfrac{6}{ - 5} [/tex]

[tex] \hookrightarrow \: m = \dfrac{ - 6}{5} [/tex]

now let's solve for b :

[tex] \hookrightarrow \: y = mx + b[/tex]

Let's plug the values of x and y from the coordinates of a point .

[tex] \hookrightarrow \: - 7 = (\dfrac{ - 6}{5} \times 5) + b[/tex]

[tex] \hookrightarrow \: - 7 = - 6 + b[/tex]

[tex] \hookrightarrow \: b = - 1[/tex]

now, let's put the value of m (slope) and b (y-intercept) in the equation.

[tex] \hookrightarrow \: y = mx + b[/tex]

[tex] \boxed{ \boxed{\: y = \dfrac{ - 6}{5}x - 1 }}[/tex]

That's All, I hope it helped ya