Please help! will mark brainliest.
only answer if you truly know
Find (ƒ – g)(x) where ƒ(x) = –x^2, g(x) = –(x + 4)^2

(ƒ – g)(x) = –8x – 16
(ƒ – g)(x) = –2x2 + 8x + 16
(ƒ – g)(x) = –2x2 – 8x – 16
(ƒ – g)(x) = 8x + 16

Respuesta :

Answer:

D

Step-by-step explanation:

We are given the two functions:

[tex]f(x) = -x^2 \text{ and } g(x) = -(x+4)^2[/tex]

And we want to find:

[tex](f - g)(x)[/tex]

Recall that this is equivalent to:

[tex]= f(x) - g(x)[/tex]

Substitute:

[tex]\displaystyle = (-x^2) - (-(x + 4)^2)[/tex]

Simplify:

[tex]= -x^2 + (x+4)^2[/tex]

Perfect square trinomial:

[tex]= -x^2 + (x^2 + 8x + 16)[/tex]

Combine like terms. Therefore:

[tex]= 8x + 16[/tex]

In conclusion:

[tex](f - g)(x) = 8x + 16[/tex]

Our answer is D.