A particle initially located at the origin has an acceleration of a=3jm/s^2 and an initial velocity of Vi=5im/s.

(a)the vector position and velocity at any time t

Respuesta :

Given the particle's acceleration is

[tex]\vec a(t) = \left(3\dfrac{\rm m}{\mathrm s^2}\right)\vec\jmath[/tex]

with initial velocity

[tex]\vec v(0) = \left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath[/tex]

and starting at the origin, so that

[tex]\vec r(0) = \vec 0[/tex]

you can compute the velocity and position functions by applying the fundamental theorem of calculus:

[tex]\vec v(t) = \vec v(0) + \displaystyle \int_0^t \vec a(u)\,\mathrm du[/tex]

[tex]\vec r(t) = \vec r(0) + \displaystyle \int_0^t \vec v(u)\,\mathrm du[/tex]

We have

• velocity at time t :

[tex]\vec v(t) = \left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath + \displaystyle \int_0^t \left(3\dfrac{\rm m}{\mathrm s^2}\right)\,\vec\jmath\,\mathrm du \\\\ \vec v(t) = \left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath + \left(3\dfrac{\rm m}{\mathrm s^2}\right)t\,\vec\jmath \\\\ \boxed{\vec v(t) = \left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath + \left(3\dfrac{\rm m}{\mathrm s^2}\right)t\,\vec\jmath}[/tex]

• position at time t :

[tex]\vec r(t) = \displaystyle \int_0^t \left(\left(5\dfrac{\rm m}{\rm s}\right)\,\vec\imath + \left(3\dfrac{\rm m}{\mathrm s^2}\right)u\,\vec\jmath\right) \,\mathrm du \\\\ \boxed{\vec r(t) = \left(5\dfrac{\rm m}{\rm s}\right)t\,\vec\imath + \frac12 \left(3\frac{\rm m}{\mathrm s^2}\right)t^2\,\vec\jmath}[/tex]