Respuesta :

Answer:

3/2

Step-by-step explanation:

Csc(theta) = 1/Sin(theta)

So we have to find the side opposite theta.

a = 3*sqrt(5)

b = ?

c = 9

a^2 + b^2 = c^2

(3sqrt(5)) ^2 + b^2 = 9^2

9*5 + b^2 = 81

b^2 = 81 = 45

b^2 = 36

sqrt(b^2) = sqrt(36)

b = 6

Sin(theta) = 6/9

Csc(theta) = 1 / sin(theta) = 9/6

Csc(theta = 3/2

Problem 3

Answer:   3/2

=====================================================

Explanation:

Use the pythagorean theorem to find the length of the missing side.

[tex]a^2 + b^2 = c^2\\\\a^2 + (3\sqrt{5})^2 = 9^2\\\\a^2+3^2*(\sqrt{5})^2 = 9^2\\\\a^2 + 9(5) = 81\\\\a^2 + 45 = 81\\\\a^2 = 81-45\\\\a^2 = 36\\\\a = \sqrt{36}\\\\a = 6\\\\[/tex]

This is the length of the missing vertical side. This side is opposite the angle theta.

[tex]\csc = \text{cosecant}\\\\\csc(\theta) = \frac{\text{hypotenuse}}{\text{opposite}}\\\\\csc(\theta) = \frac{9}{6}\\\\\csc(\theta) = \frac{3*3}{3*2}\\\\\csc(\theta) = \frac{3}{2}\\\\[/tex]

Alternatively, you can compute it like this

[tex]\sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}}\\\\\sin(\theta) = \frac{6}{9}\\\\\sin(\theta) = \frac{2}{3}\\\\\csc(\theta) = \frac{1}{\sin(\theta)}\\\\\csc(\theta) = 1 \div \sin(\theta)\\\\\csc(\theta) = 1 \div \frac{2}{3}\\\\\csc(\theta) = \frac{3}{2}\\\\[/tex]