Here is a recursive definition for a sequence f: f(0) = 19, f(n) = f(n − 1) – 6 for
n? 1. The definition for the nth term is f(n) = 19 - 6. n for n > 0.
a. Explain how you know that these definitions represent the same sequence.
b. Select a definition to calculate f(20), and explain why you chose it.
(From Unit 1, Lesson 8.)
7. An arithmetic sequence j starts 20, 16, ... Explain how you would calculate the value
of the 500th term.
(From Unit 1, Lesson 8.)

Respuesta :

An arithmetic progression is a sequence that has a common difference between consecutive terms.

  • [tex]f(n) = 19 -6n[/tex] and [tex]f(0) = 19\\f(n) = f(n - 1) -6;[/tex]  represent the same sequence
  • The definition I will choose for f(20) is: [tex]f(20) = 19 - 6 \times 20[/tex].
  • The 500th term is -1976.

Question 6:

The recursive function is given as:

[tex]f(0) = 19\\f(n) = f(n - 1) -6;[/tex]     for [tex]n \ge 1[/tex]

The definition of nth term is given as:

[tex]f(n) = 19 - 6n[/tex]  for [tex]n > 0[/tex]

A proof that the functions represent the same sequence is as follows:

Set [tex]n=1[/tex] in

[tex]f(0) = 19\\f(n) = f(n - 1) -6;[/tex]

[tex]f(1) = f(1 -1) - 6 = f(0) - 6[/tex]

[tex]f(1) = 19 - 6 = 13[/tex]

Set [tex]n = 2[/tex]

[tex]f(2) = f(2 -1) - 6 = f(1) - 6[/tex]

[tex]f(2) = 13 - 6 = 7[/tex]

Set [tex]n = 3[/tex]

[tex]f(3) = f(3 -1) - 6 = f(2) - 6[/tex]

[tex]f(3) = 7 - 6 = 1[/tex]

Write out the equations

[tex]f(1) = 19 - 6 = 13[/tex]

[tex]f(2) = 13 - 6 = 7[/tex]

[tex]f(3) = 7 - 6 = 1[/tex]

Rewrite as:

[tex]f(1) = 19 - 6 = 13[/tex]

[tex]f(2) = 19 - 6 - 6 = 7[/tex]

[tex]f(3) = 19 - 6 - 6 -6= 1[/tex]

Rewrite again as:

[tex]f(1) = 19 -6\times 1 = 13[/tex]

[tex]f(2) = 19 -6\times 2 = 7[/tex]

[tex]f(3) = 19 -6\times 3 = 1[/tex]

Replace the numbers in brackets with n

[tex]f(n) = 19 -6\times n[/tex]

[tex]f(n) = 19 -6n[/tex]

Hence, it is proved that

[tex]f(n) = 19 -6n[/tex] and

[tex]f(0) = 19\\f(n) = f(n - 1) -6;[/tex]  represents the same sequence

The definition I will choose for f(20) is:

[tex]f(20) = 19 - 6 \times 20[/tex]

This is gotten from [tex]f(n) = 19 -6n[/tex].

I choose the definition because it is faster to calculate f(20) directly, than using recursion

Question 7:

Given that:

[tex]T_1 = 20[/tex]

[tex]T_2 = 16[/tex]

First, we calculate the common difference

[tex]d = T_2 - T_1[/tex]

[tex]d = 16 - 20 =-4[/tex]

The 500th term is then calculated using the nth term of an arithmetic progression formula.

[tex]T_n = T_1 + (n - 1) \times d[/tex]

So, we have:

[tex]T_{500} = 20+ (500 - 1) \times -4[/tex]

[tex]T_{500} = 20+ 499 \times -4[/tex]

[tex]T_{500} = 20 -1996[/tex]

[tex]T_{500} = -1976[/tex]

Hence, the 500th term is -1976.

Read more about arithmetic progression at:

https://brainly.com/question/22445557