The work done by the Coulomb force will be "[tex]6.08\times 10^{-21} \ J[/tex]".
Let us define the required work done to move that alpha particle to the one of the mid point of the side length as follows.
→ [tex]W = \frac{4kqQ}{r_1} -(\frac{2kqQ}{r_2} +\frac{2kqQ}{r_3} )[/tex]
→ [tex]=2kqQ(\frac{2}{r_1} -\frac{1}{r_2} -\frac{1}{r_3} )[/tex]
→ [tex]=2(8.99\times 10^9)(-1.6\times 10^{-19})(2)(1.6\times 10^{-19})[/tex]
→ [tex]= (\frac{2}{\sqrt{(5\times 10^{-9})^2+(5\times 10^{-9})} } -\frac{1}{(5\times 10^{-9})} -\frac{1}{\sqrt{(10\times 10^{-9})^2} +(5\times 10^{-9})^2} )[/tex]
→ [tex]= 6.08\times 10^{-21} \ J[/tex]
Thus the above answer is appropriate.
Learn more about work done here:
https://brainly.com/question/24716770