Respuesta :
Let
- B=x
- L=x+2
ATQ
[tex]\\ \sf\longmapsto LB=Area[/tex]
[tex]\\ \sf\longmapsto x(x+2)=99[/tex]
[tex]\\ \sf\longmapsto x^2+2x=99[/tex]
[tex]\\ \sf\longmapsto x^2+2x-99=0[/tex]
[tex]\\ \sf\longmapsto x^2+11x-9x-99=0[/tex]
[tex]\\ \sf\longmapsto x(x+11)-9(x+11)[/tex]
[tex]\\ \sf\longmapsto (x-9)(x+11)=0[/tex]
Take positive
[tex]\\ \sf\longmapsto x=9[/tex]
Answer:
[tex]length = 11ft \\ width = 9ft[/tex]
Step-by-step explanation:
Let the wide be x
length = x+2
Area = Length * width
[tex]99 = x(x + 2) \\ [/tex]
Now let's solve the expression and find the width
[tex]x(x + 2) = 99 \\ {x}^{2} + 2x = 99 \\ {x}^{2} + 2x - 99 = 0 \\ {x}^{2} + 2x = 99 \\ {x}^{2} + 2x + 1 = 99 + 1 \\ {(x + 1)}^{2} = 100 \\ x + 1 = \sqrt{100} \\ x + 1 = ±10 \\ x = ±10 - 1 \\ \\ x = + 10 - 1 \\ = 9 \\ \\ x = - 10 - 1 \\ = - 11[/tex]
As a negative number cannot be get as a length
We have to get the positive number as the length
so,
[tex]x = 9ft[/tex]
[tex]x + 2 = 9 + 2 \\ = 11ft[/tex]
hope this helps you.
let me know if you have another questions :-)