Respuesta :

Answer:

[tex] \frac{ {sec}^{2} 60 \: - \: {tan}^{2}60 }{ {sin}^{2}30 + {cos}^{2}30 } [/tex]

[tex] {sec}^{2} 60 = {2}^{2} = 4[/tex]

[tex] {tan}^{2} 60 = { \sqrt{3} }^{2} = 3[/tex]

[tex] {sin}^{2} 30 = { (\frac{1}{2}) }^{2} = \frac{1}{4} [/tex]

[tex] {cos}^{2} 30 = {( \frac{ \sqrt{3} }{2} )}^{2} = \frac{3}{4} [/tex]

[tex] = \frac{4 - 3}{ \frac{1}{4} + \frac{3}{4} } [/tex]

[tex] \frac{1}{( \frac{4}{4} )} = \frac{1}{1} = 1[/tex]

Answer:

[tex]\huge\boxed{ \bf\:1}[/tex]

Step-by-step explanation:

The key element to solve this question is to know the trignometric values of the given angles.

cosec θ, sec θ & cot θ are the reciprocals of sin θ, cos θ & tan θ respectively.

Please refer to the attachment for the trignometric values of 30°, 45° & 60° angles as they are used in the given question.

[tex]\rule{150}{2}[/tex]

Now, let's solve this question.

First, let's write the values of the given trignometric degrees.

[tex]\star\sec^{2}(60) = 2^{2}= 4\\ \star\tan^{2}(60) = (\sqrt{3} )^{2} = 3\\\star\sin^{2}(30) = (\frac{1}{2} )^{2} = \frac{1}{4} \\\star\cos^{2}(30) =( \frac{\sqrt{3} }{2} )^{2} = \frac{3}{4}[/tex]

Now, let's solve the given question by substituting the above values & then simplifying by doing the necessary arithmetic operations.

[tex]\sf\:\frac{\sec^{2}(60) - \tan^{2}(60)}{\sin^{2}(30)+\cos^{2}(30)}\\\sf\:= 4-3 \: \div \frac{1}{4} + \frac{3}{4} \\\sf\:= 1 \div \frac{4}{4} \\\sf\:= \frac{1}{1} * \frac{4}{4} (reciprocal) \\\sf\:= \frac{4}{4} \\=\boxed{ \bf\:1}[/tex]

[tex]\rule{150}{2}[/tex]

Ver imagen ᴜᴋɪʏᴏ