a box is to be made where the material for the sides and the lid cost​ $0.20 per square foot and the cost for the bottom is ​$ per square foot. find the dimensions of a box with volume cubic feet that has minimum cost.

Respuesta :

The length of a box will be "1.8485 tt", width "1.8485 tt" and height "4.3899 tt".

According to the question,

  • Volume = 15 ft³
  • Cost of top & side = $0.20
  • Cost of bottom = $0.75

Let,

  • The height of box be "y".
  • The length of side on top and bottom be "x".

→ [tex]V = x^2y[/tex]

[tex]x^2y = 15[/tex]

    [tex]y = \frac{15}{x^2}[/tex]

Now,

→ [tex]Cost \ C(x) = Cost \ of \ top+Cost \ of \ bottom + Cost \ of \ side[/tex]

By substituting the values, we get

→                  [tex]= 0.20 x^2+0.75 x^2+ 0.20(4xy)[/tex]

→                  [tex]= 0.95x^2+0.20(4x \ \frac{15}{x^2} )[/tex]

→                  [tex]= 0.95x^2+\frac{12}{x}[/tex]

→        [tex]C'(x) = 1.9 x-\frac{12}{x^2}[/tex]

                [tex]0=1.9x-\frac{12}{x^2}[/tex]      

→         [tex]C''(x) = 1.9+\frac{24}{x^3}[/tex]

              [tex]1.9x = \frac{12}{x^2}[/tex]

hence,

→ [tex]x^3=\frac{12}{1.9}[/tex]

    [tex]x = 3\sqrt{\frac{120}{19} }[/tex]

       [tex]\approx 1.8485 \ tt[/tex]

and,

→ [tex]y = \frac{15}{(1.8485)^2}[/tex]

     [tex]\approx 4.3899 \ tt[/tex]

Thus the above answer is appropriate.

Learn more:

https://brainly.com/question/16996937