Add an E-W force and a N-S force so the object is at equilibrium.
Add a Force
re
Given: 64.0 N. 128.7°CCW
Tap to learn about CCW

Add an EW force and a NS force so the object is at equilibrium Add a Force re Given 640 N 1287CCW Tap to learn about CCW class=

Respuesta :

The addition of vectors allows to find the vector that the equilibrium is

                F = (40.02 i ^ - 49.95 j ^) N

Parameters given

  • Vector value A = 64.0 N and tea = 128.7º

To find

  • The vector that allows equilibrium

The force is a vector magnitude so the sum of the force must be done using the methods to add vectors.

One of the easiest methods to perform the addition of vectors is the analytical method where each vector is decomposed in a Cartesian system and the components added using algebraic summation and then the resulting vector is constructed.

We decompose the vector

                 cos θ = [tex]\frac{A_x}{A}[/tex]Ax / A

                 sin θ = [tex]\frac{A_y}{A}[/tex]

                 Aₓ = A cos θ

                 [tex]A_y[/tex]= A sin θ

                 Aₓ = 64 cos 128.7

                 [tex]A_y[/tex] = 64 sin 128.7

                 Aₓ = -40.02 N

                 [tex]A_y[/tex] = 49.95 N

To find the vector that allows equilibrium, we work each axis independently

X axis

                 Aₓ + Fₓ = 0

                 Fₓ = - Aₓ

                 Fₓ = 40.02 N

Y axis

                  [tex]A_y + F_y =0 \\F_y = - A_y\\F_y = - 49.95 N[/tex]

We can write the resulting vector in two ways

1) F = (40.02 i ^ - 49.95 j ^) N

2) in the form of module and angle

Let's find the module with the Pythagoras' Theorem

              F =[tex]\sqrt{F_x} ^2 + F_y^2)\\F = \sqrt{40.02^2 + 49.95^2 }[/tex]  

              F = 64 N

Angles

              tan θ = [tex]\frac{F_y}{F_x}[/tex]

              θ = tan⁻¹  [tex]\frac{F_y}{F_x}[/tex]

              θ = tan⁻¹ [tex]\frac{-49.95}{40.02}[/tex]

              θ = -51.3º

This angle is measured clockwise from the positive side of the x-axis

In conclusion using the sum of vectors we can find the vector that allows the equilibrium is

                F = (40.02 i^  - 49.95 j^ ) N

Learn more about adding vectors here:

https://brainly.com/question/14748235

Ver imagen moya1316