Respuesta :

Answer:

Step-by-step explanation:

1) ∠2 = 88      {Vertically opposite angles}

∠2 +∠1 = 180 {Linear pair}

88 + ∠1 = 180

       ∠1 = 180 - 88

       ∠1 = 92°

∠3 = ∠1  {Vertically opposite angles}

∠3 = 92

Answer: ∠1 = ∠3 =  92°  and ∠2 = 88°

2) AB ⊥ CD

∠BOD = 90

  ∠BOT + ∠TOD = ∠BOD

3x + 36 + 5x - 4 = 90

3x + 5x + 36 - 4 = 90      {Combine like terms}

8x + 32 = 90  {Subtract 32 form both sides}

8x = 90 - 32

8x = 58

x = 58/8

x = 7.25

3) BD is angle bisector of ∠ABC. So,

∠ABD = ∠DBC

7x - 16 = 4x - 1    

Add 16 to both sides

7x       = 4x - 1 + 16

7x = 4x  + 15

Subtract 4x from both sides

7x - 4x = 15

3x = 15

Divide both sides by 3

x = 15/3

x = 5

4)9x + 22 = x  + 46  {Vertically opposite angles}

   Subtract 22 form both sides

9x = x + 46 - 22

9x = x  + 24

Subtract 'x' form both sides

9x - x = 24

8x = 24

Divide both sides by 8

x = 24/8

x = 3

x + 46 + 2y + 7 = 180    {linear pair}

Plugin x = 3,

3 + 46 + 2y + 7 = 180

2y + 56 = 180

2y = 180 - 56

2y = 124

y = 124/2

y = 62