Respuesta :

Step-by-step explanation:

[tex]radians = \frac{2\pi}{360} \times 136[/tex]

[tex] = \frac{\pi}{180} \times 136[/tex]

[tex] = \frac{34\pi}{45} [/tex]

Happil

Answer:

[tex]136[/tex] degrees is approximately [tex]2.373[/tex] in radiance.

[tex]136[/tex] degrees is exactly [tex]\frac{34 \pi}{45}\\[/tex] in radiance.

Step-by-step explanation:

Let [tex]r[/tex] be radiance.

Let [tex]d[/tex] be degrees ([tex]^{\circ}[/tex]).

Recall:

[tex]d = \frac{\pi}{180}r \\[/tex]

Writing [tex]136[/tex] degrees in radiance:

[tex]136d \\ 136d \cdot \frac{\frac{\pi}{180}r}{d} \\ 136 \cdot \frac{\pi}{180}r \\ \frac{136 \pi}{180}r \\ \frac{34 \pi}{45}r \\ 0.7\overline{5} \pi r[/tex]

[tex]136[/tex] degrees is [tex]0.7\overline{5} \pi[/tex] in radiance. If we estimate [tex]\pi[/tex] to be [tex]3.14[/tex], [tex]0.7\overline{5} \pi \approx 2.373[/tex].